用Python开始机器学习(1:配置windows平台)

使用机器学习的开发工具很多,如Matlab,R语言,Python等等。

本系列文章不会涉及深入的机器学习原理,旨在让你迅速上手,入门Python进行机器学习。

本文提供一系列资源,教你打造一个Python机器学习的平台。

 

1、下载资源

Python

本文以Python 3.4为例。当然你可以使用老版本。

老版本的一个优势是扩展库比较多。

链接:https://www.python.org/

 

下面是Python的扩展库。

numpy:用于处理大规模多维数据。

scipy:数学库。

scikit-learn:机器学习库。

matplotlib:可视化数据神器。文档和示例地址:http://matplotlib.org/gallery.html

扩展库必须与使用的Python版本相对应。最简单的安装方式就是在命令行中使用pip3命令。比如: pip3 install numpy

某些库(极少数)可能pip命令下载不到,需要自己去下载。这里给出一个神地址,能快速下载到下面需要的,各种平台、各种python版本的扩展库。

http://www.lfd.uci.edu/~gohlke/pythonlibs/

上面的安装文件如果是exe,会自动帮你拷贝到python目录。否则你需要自己拷贝到python3.4.2\Lib\site-packages下。

 

2、测试库

在python中使用类似“import matplotlib”的方式来查看库的安装是否正确。提示缺少什么库,就去上面的神地址里搜索,下载安装。

 

这几个库装完后,可能会有部分依赖库需要单独安装:

sixnosepyparsingdateutil

如果出现类似six版本低于1.3之类的提示,你可能需要找到site-packages下的six.py拷贝到site-packages目录下替换老的。

 
3、其他资源推荐

Python教程:http://www.liaoxuefeng.com/wiki/001374738125095c955c1e6d8bb493182103fac9270762a000

sci-learn教程:http://scikit-learn.org/stable/

windows下Python的IDE选择:http://blog.csdn.net/cserchen/article/details/7036435

经典Python机器学习入门书籍《机器学习系统设计》的源码和数据:https://github.com/luispedro/BuildingMachineLearningSystemsWithPython/tree/master/ch02

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值